Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA

نویسندگان

  • Nathan Torbick
  • Brian Becker
چکیده

Mapping species composition is a focus of the wetland science community as this information will substantially enhance assessment and monitoring abilities. Hyperspectral remote sensing has been utilized as a cost-efficient approach. While hyperspectral instruments can record hundreds of contiguous narrow bands, much of the data are redundant and/or provide no increase in utility for distinguishing objects. Knowledge of the optimal bands allows users to efficiently focus on bands that provide the most information and several data reduction tools are available. The objective of this Communication was to evaluate Principal Components Analysis (PCA) for identifying optimal bands to discriminate wetland plant species. In-situ hyperspectral reflectance measurements were obtained for thirty-five species in two diverse Great Lakes wetlands. PCA was executed on a suite of categories based on botanical plant/substrate characteristics and spectral configuration schemes. Results showed that the data dependency of PCA makes it a poor, stand alone tool for selecting optimal wavelengths. PCA does not allow diagnostic comparison across sites and wavelengths identified by PCA do not necessarily represent wavelengths that indicate biophysical attributes of interest. Further, narrow bands captured by hyperspectral sensors need to be substantially resampled and/or smoothed in order for PCA to identify useful information. OPEN ACCESS Remote Sens. 2009, 1 409

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Hyperspectral Characters of Wetland Species Using In-situ Data

Wetland species identification is a very important process when determining wetland ecosystem types and wetland composition. Hyperspectral data with the merit of high spectral resolution have become a powerful tool for ground feature identification compared with multi-spectral data. This paper investigated the hyperspectral characters of wetland plants by considering the two prominent attribute...

متن کامل

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

Ica/pca Base Geneticly Band Selection for Classification of Hyperspectral Images

Optimal band selection is an effective tool to overcome the curse of dimensionality for remotely sensed image, which has become gradually important with the availability of hyperspectral remote sensing image. By using genetic algorithms (GA) in solving problems of combinatorial optimization, by using special coding mechanism and fitness function, this paper proposed an approach to select and ex...

متن کامل

Curvelet-Based Image Fusion Algorithm for Effective Anomaly Detection in Hyperspectral Imagery

Anomaly detection is one of the most important applications for hyperspectral imagery. However, some technical difficulties haven’t been effectively solved so far, such as high data dimensionality and high-order correlation between spectral bands. In this paper, a new curvelet-based image fusion algorithm is proposed for effective anomaly detection in hyperspectral imagery. In the proposed algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009